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Note 

Dynamic and Quasi-Equilibrium 
Lagrangian MHD in l-D* 

1. INTRODUCTION 

Quasi-equilibrium calculations of 1-D MHD problems continue to be of interest 
[l-3]. The basic principle used in these works is a two-step process: (1) solution of 
the diffusion processes in a rigid mesh, and (2) relaxation of the mesh allowing 
adiabatic changes. The present note discusses a procedure for including the inertia 
term in a smooth way which allows for all ranges of dynamic and quasi-steady 
behavior. 

In pinch experiments such as the ZT-40 [4] there is an initial dynamic implosion 
phase which the pressure balance model does not describe well, followed by a long- 
term, quasi equilibrium phase which is well described by it. Previously it was 
impossible to run the whole problem smoothly through both regimes with precisely 
the same algorithm. A problem which is an even more severe test of the versatility of 
the algorithm and which does not become too involved in the detail of a particular 
experiment is the ideal equilibrium Z-pinch as discussed by Pease [5]. This problem 
will be discussed in the present note. More extensive calculations on the ZT-40 
machine are in progress and will be published later in an article in which the 
emphasis will be on the physics of the device. 

2. MHD EQUATION 

Since the diffusive effects are calculated in a fairly standard way, the following 
discussion is concerned with the adiabatic step. The Lagrangian variable x is taken to 
be proportional to the initial volume inside the radius r. Thus, the Eulerian position 
T(X, t) is given in terms of the inverse compression V(x, t) by 
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In terms of the Lagrangian coordinate system the momentum equation is written as 

(2) 

The variables x and r are evaluated at cell edges labeled by the index i. The ther- 
modynamic and magnetic properties are evaluated at the cell centers indicated by 
half-integer indices. The difference analog of (2) is then written as 

fqu” - 112 _ Un 3/Z) 

At 

+s- p;+,,2 
PoiAXi [ 

_ pI- 1,2 + K(q;F;/2” _ q;I;/22) + K.i+ l/2)22i @c+,,,)Z 

0 I 

1 
+- - O-l+ I12Zii+ 1i2 1' - (rl- 1,*x& L/J2 = o 

Po,iC Axi Go I 

9 

where the artificial viscosity ql;$ is given by [6] 

(4) 

and c is a constant of order unity. The ~o,i and & are normally located at cell 
centers, but the barred quantities are averaged for the cell edges. To force a quasi- 
steady pressure balance calculation the constant K is set equal to zero. For the 
dynamic problem K is set equal to unity. The time index n indicates the advanced 
time. The difference expression for the velocity ~1-r’~ is 
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Solution of (3) can be performed either before or after the diffusive calculation. 
The solution to (3) must be performed ip conjunction with the energy and magnetic 
equations truncated by deletion of the diffusive terms. The truncated energy equation 
is 

(5) 
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where e is the specific internal energy and Vy+ ,,,2 is the inverse compression, 

Y+ I/Z = O-l+ J’ - O-3’ 
2AXi+1/2 ’ (7) 
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and e, and pT are temperature derivatives. The magnetic equations are 

By the use of (4)-(9), (3) can be put in the form of a nonlinear system of equations 
for the mesh positions of the form 

This system is solved by the Newton-Raphson procedure with the residuals dry 
obtained by a solution of the tri-diagonal system, 

AT!’ r-1 + afi,r!’ + afi Ar! 
ary ’ &;+, ‘+I’ (11) 

The actual expressions for the derivatives in (11) turn out to be 
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The thermodynamic and magnetic quantities in (12)-(14) are calculated through 
(6)-(9). The iterations are judged to be converged when the residuals in (11) remain 
unchanged to within a specified accuracy on successive iterations. 

At this point it is worth comparing the present method with other methods. 
Lindemuth and Killeen [7] used the Newton-Raphson method to get convergence of 
their coupled, non-linear equations. However, they were treating 2-D Eulerian 
equations without splitting off the adiabatic part. Thus their algorithm is much more 
involved. Harlow and Amsden [8] use truncated equations to obtain pressure by a 
point-iterative procedure in Eulerian hydrodynamics. Although the splitting method 
is analogous, it is found that a global relaxation procedure is necessary for 
convergence in the present model for Lagrangian MHD. 

3. THE EQUILIBRIUM Z-PINCH 

In the original equilibrium Z-pinch model [5], the external radius was assumed 
fixed and pressure balance was assumed. In the present test calculation the pressure 
balance relation is replaced by the momentum equation, as discussed in the previous 
section. An initial, uniform temperature is given and the time-dependent motion is 
followed until the long-term thermal balance is reached. In order to keep the outer 
radius at a fixed value the driving current must be programmed properly. This 
requires a special control program which is not used in other calculations and which 
is illustrated in Fig. 1. 

The calculated current I, is obtained as follows: 

(1) Hold the outer radius b fixed. 
(2) Guess a value for the driving current Z,(t + At). 

(3) Solve the momentum equation for the new configuration at time t -t- At. 

(4) Calculate the new current I,(t + At) from the generalized Bennett relation, 

,uoZ2 = 16niV~T- 87t2K 
du 

r2p - dr, 
dr 

where N is the line density and T is the average temperature. In the forced 
equilibrium calculation K is set equal to zero and the usual Bennett relation is used. 
Experience indicates that if the relaxation parameter o indicated in Fig. 1 is taken as 
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FIG. 1. Flow diagram for the programmed current iteration. 

unity, the iterations do not converge. However, when a smaller value, o o 0.2, is 
taken, the convergence is quite dependable. It is worth noting that the only difference 
between the dynamic and forced equilibrium calculations is the setting of K to unity 
or to zero. 

It is important to consider the initial conditions in terms of the equations given. 
The initial configuration is taken to be a plasma of uniform density and temperature. 
In the dynamic calculation the plasma moves in the first time step exactly according 
to the above equations with the current set at t + At to the value required to maintain 
a fixed outer radius b. In the case of the forced equilibrium calculation, the initial 
configuration is, of course, not one of pressure balance for confinement by a current. 
However, the state at t + At is the pressure balance state connected to it by the 
appropriate adiabatic adjustment. From then on, each configuration satisfies pressure 
balance exactly. 
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FIG. 2. Z-Pinch plasma current vs time over a long time scale. 

In the particular example considered here, the plasma was started at 10 eV and the 
calculation run until the Pease steady state was established. This took about 3 msec 
in physical time. This calculation was a good test of how the method goes smoothly 
from a highly dynamic phase to a quasi-steady phase. In the early stages of the 
problem At N lo-i4 was required to follow the dynamics brought about by the 
extremely rapid current rise. As the inertia term ceased to be important, the 
calculation went smoothly into a quasi-equilibrium with the constant K remaining 
unity. The current vs time is plotted in Fig. 2. The whole calculation took about 
6 min of 7600 time. A forced quasi-equilibrium calculation with K = 0 took about 
3 min of 7600 time, but did an inadequate job of following the detailed variation of 
velocity and temperature profiles in the early stages. 

From the point of view of following the plasma to full Pease thermal balance, the 
forced equilibrium calculation is quite adequate in terms of the form the current rise 
vs time taken. Indeed, there is no observable discrepancy between the K = 0 and 
K = 1 cases. In-the dynamic case, the details of the early motion are quite different 
from those found in the pressure balance case, but to plot all the details here is not as 
important as to make the main point that the dynamic algorithm is such that these 
details can be followed when they are important. Full advantage will be taken of this 
property in work on the above mentioned ZT-40 calculations in progress. 
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